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Biometric systems are an uprising technique of identification in today’s world. Many different systems
have been used in everyone’s daily life in the past years, such as fingerprint, face scan, and others. We
propose a new identification method using Elektrokardiogramms (EKGs) converted into a heatmap of a
set of aligned R-peaks (heartbeats), forming a matrix called an Elektrokardiomatrix (EKM). We can build
a one-against-many identification system using a Convolutional Neural Network (CNN). We have tested
our proposal with one main database (the Normal Sinus Rhythm Database (NSRDB)) and two other data-
bases, which are the MIT-BIH Arrhythmia Database (MIT-BIHDB) and the Physikalisch-Technische
Bundesanstalt (PTB) Database. With the NSRDB, we have achieved an accuracy of 99.53% and offered a
False Acceptance Rate (FAR) of 0.02% and a False Rejection Rate (FRR) of 0.05%. Very similar results were
also obtained with the MIT-BIH and PTB databases. We have performed in-depth experimentation to test
the efficiency and feasibility of our novel biometric solution. It is remarkable that with a simple CNN,
which has only one convolutional layer, a max-pooling operation, and some regularisation, we can iden-
tify users with very high performance and low error rates. Consequently, our model does not need very
complex architectures to offer high-performance metrics.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, biometrics techniques are widely used in everyday
life. Examples range from the start of the day when an individual
unlocks her phone with facial recognition or his fingerprint, to
enter into his workspace with again his fingerprint, to access speci-
fic resources with an iris or retina scanner or even by the police
department to gather pieces of evidence from a crime scene with
latent fingerprints [1–3].

Besides, there exist different approaches in biometrics to iden-
tify a human being. Generally, there are two main groups of bio-
metric identifiers: behavioural and physical ones [4]. Firstly, in
the behavioural biometric identifiers we can find signature recog-
nition [5], voice recognition [6], keystroke dynamics [7] and even
touch-dynamics on mobile devices [8]. These behavioural recogni-
tion modalities are based on the actions of human beings or even
animals. Secondly, the physiological biometrics are the well-
known iris [9], face [10] and fingerprint [11] and some others such
as finger veins [12], ear [13] and footprint [14] which are based on
physical characteristics of a human being.
In the past years, biometrics-based on cardiac signals, called
Electrocardiogram (ECG) or Elektrokardiogramm (EKG), have been
introduced to some systems due to the following four key points
[15]: 1) An EKG is a non-invasive technique, whereas an iris or
retina scanner would be; 2) It is very rough against counterfeiting
or spoofing practices because one can only be identified through its
EKG if it is alive; 3) All living beings have their own EKG; and 4) An
EKG also provides additional information related to psychological
states and physiological status, which can be interesting for some
applications [16].

The EKG is an electrical signal provoked by cardiac muscle
depolarisation followed by repolarisation during each cardiac cycle
(heartbeat). When the electrical activity is drawn through Voltage
(V) versus time (t) in a graph, it is called an EKG. Each cycle of the
heart starts with atrial depolarisation (P wave) followed by ventri-
cle depolarisation (QRS complex) and rapid ventricle repolarisation
(T wave), and finishes with the Purkinje fibbers’ repolarisation (U
wave) to start again. Each of these patterns is unique and repre-
sents different heart functioning phases, as shown in Fig. 1.
Besides, cardiac diseases can affect the structure of the EKG. For
instance, a sinus arrhythmia could affect the R-R interval into an
irregular rate, or a tachycardia can affect the heartbeat’s whole
rate.
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Fig. 1. Electrocardiogram with its fiducial medical points.

Fig. 2. Heatmap representation of an EKG.
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Due to the uniqueness of an EKG, researches on identification
techniques using this signal are very numerous and have more
than 20 years of experience [17,18]. The purpose of all researches
is to identify users through their EKG using a huge variety of tech-
niques in classification such as k-Nearest Neighbour (k-NN), Sup-
port Vectors Machine (SVM), Linear Discriminant Analysis
Classifier (LDAC), Multilayer Perceptron (MLP), and Convolutional
Neural Network (CNN) among others [19–23].

In this work, we aim to go further with the identification of
users through their EKG by using the Electrocardiomatrix (Elek-
trokardiomatrix (EKM) or Electrocardiomatrix (ECM)) representa-
tion recently introduced in [24]. This EKM was first used for
medical purposes to diagnose some heart diseases such as Atrial
Fibrillation and Atrial Flutter [25–27]. As shown in Fig. 2, an EKM
is a heatmap matrix of size N � sp where N is the number of peaks
(heartbeats) chosen to form the matrix1 and sp is the number of
necessary samples to ensure that two R-peaks from the N chosen
are placed in each row. In other words, in each row appears two
R-peaks. Therefore, the first peak of the n + 1-th row is the same
one as the second peak of the n-th row. Consequently, each peak
from the second peak of the matrix to the peak N � 1 is going to
be shown two times. Summarising the EKM shows the distance
between peaks and their intensity. As a recent example of the use
of the EKM, Salinas-Martínez et al. propose it as a powerful tool to
detect cardiac anomalies [28] by using a CNN to classify the EKMs
into two classes (i.e., regular or Atrial Fibrillation –AF). This way,
automatic analysis is done instead of analysing the whole EKG
manually.

Regarding the analysis of the signal, fiducial and non-fiducial
based approaches are the two main alternatives. On the one hand,
a fiducial analysis of a signal consists of using the signal with
markers. Concerning the EKG, these markers or points are the
well-known waves or phases of one heartbeat as shown in Fig. 1
1 It is essential to remark that the number of chosen peaks (N) is a hyperparameter
which can be tunned regarding the use of the EKM.
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and other relevant characteristics or points of the signal (e.g., PQ
interval, RT interval, PQ amplitude or RS amplitude). An excellent
example of a fiducial analysis is the study that conducts a medical
professional when inspections on an EKG trace for heart diseases
such as Atrial Fibrillation, Tachycardia, and others [29]. We can
also find fiducial analysis in studies where users’ identification is
their primary goal, as in [30].

On the other hand, the non-fiducial analysis does not focus on
the signal’s specific points or markers but also on the whole signal.
It could be considered a general analysis. As the entire signal is
taken and not some points of it, the EKG can be processed either
in time, frequency, time–frequency or even as an image. Thanks
to that, the identification over the signal can be performed through
K-NN, SVM or a CNN between others [31–33]. It is relevant to
remark that extracting features with a CNN is not a fiducial analy-
sis. Those features extracted from a CNN are the ones that explain
the data itself, not the fiducial medical points represented in Fig. 1.

Indeed, the work presented in this paper focuses on a non-
fiducial analysis. The EKG will be processed in the so-called EKM
which is a heatmap representation of a certain number of beats,
as explained previously. Therefore, the fiducial points (R-peaks)
used to construct the matrix mentioned above do not participate
in the identification process. In a nutshell, the EKM images are
the raw inputs to our identification system.

To construct the EKM, we need a detector of fiducial points. Par-
ticularly, what is needed is a detector of the R peaks (depicted in
Fig. 1). We conduct a deep study about this procedure since detect-
ing or not the signal’s R-peaks can hardly affect the EKM genera-
tion. In the literature, we can find multiple detectors to
distinguish the R-peaks of an EKG. One of the most accepted is
the Pan-Tompkins detector [34], which offers a high accuracy
detection. Other detectors have been developed in the past years
based on different approaches such as Shannon Energy Envelope
(SEE) or Hybrid Complex Wavelet (HCW) for R-peak detection
and Biorthogonal Wavelet Transform (BWT) and Run-Length
Encoding (RLE) for QRS complex detection [35–37].

To summarize, we show the pipeline of our method in Fig. 3.
The process starts with the acquisition of the raw EKG database
and ends with the users’ identification. We explain every step of
this pipeline in the subsequent sections.

Our main contributions with this paper are:

� We are the first contribution, to the best of our knowledge,
which have proposed to use the recently presented EKG repre-
sentation (the EKM) to build a robust and feasible identification
system based on ECG signals.



Fig. 3. Pipeline and process of ELEKTRA..
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� We have designed a simple but effective CNN to test multi-class
and binary identification scenarios, which can achieve tiny error
rates with our ELEKTRA model.

� To guarantee reproducibility and demonstrate the feasibility of
our proposal, we have used four public datasets (Normal Sinus
Rhythm Database (NSRDB), MIT-BIH Arrhythmia Database
(MIT-BIHDB), Physikalisch Technische Bundesanstalt (PTBDB)
and Brno University of Technology ECG Quality Database
(BUTQDB)) in our experiments.

� Apart from the standard performance metrics (e.g., accuracy
and EER), we have also analysed the probability of an imperson-
ation attack or the system’s resistance to noisy users.

� In the comparison analysis, we have shown how our model can
obtain results as good as the ones in the state-of-the-art with a
simpler identification method and an efficient model.

Organisation: The rest of the article is structured as follows. In
Section 2, we review the literature related to EKG biometric iden-
tification. We introduce the signal pre-processing techniques, EKG
representation and the databases used in our experiments in Sec-
tion 3. In Section 4, we analyse the results (multi-class and binary
classification) and study the influence of several parameters such
as the number of R-peaks forming the EKM or the used epochs.
Finally, we extract some conclusions and compare our proposal
with previous works in Section 5.
2 Transfer Learning is a broadly used technique applied in Deep and Machine
Learning that consists of using a pre-trained network. Optimised weights from the
pre-trained network are taken to solve a new problem with similar characteristics to
the original one.
2. Related work

Identification through the EKG has been a regularly used tech-
nique in biometrics since many years ago. Already in 2001, L. Biel
showed how an EKG trace obtained from just one-lead was enough
to identify an individual [38]. The above result implies that the EKG
can be used for biometrics in many different applications [39]. One
year later, in [40] Shen et al. confirmed that it is possible to identify
a person among a different group of candidates with one-lead EKG.
In detail, the authors showed how to identify 20 subjects from the
MIT-BIH database [41] with two different techniques, Decision
Based Neural Network (DBNN) and Template Matching, and
achieving an accuracy of 80% and 95%, respectively.

In the literature, we can find a wide variety of approaches for
identification using EKG records. Some proposals use the raw sig-
nal after applying some filters [42], other works transform the
EKG into an image and process it as a picture [43,44] or other solu-
tions extract fiducial points of the EKG and use them directly to
classify between different users as in [45] where the DETECT
method is presented. The authors tested DETECT using the data-
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base of the challenge titled ”You Snooze You Win” [46], and the
error rates are low (FRR and FAR of 6:4� 10�2 and 3:3� 10�5),
and the accuracy is moderately high (i.e., 92%).

Given the outlook of identification of EKG using Neural Network
(NN), there exist very different methods. One interesting work is
[42] where Salloum and Kuo design an identification system based
on cardiac signals and over different types of Recurrent Neural Net-
work (RNN). As the input of their NN the authors use a vector of
several consecutive heartbeats waveforms. The particular number
of waveforms is a hyperparameter in the proposal. For experimen-
tation, they use traditional RNNs, NN with Long Short-Term Mem-
ory (LSTM) units and with Gated Recurrent Unit (GRU) and test
each identification proposal with two public databases: ECG-ID
database [47] and the MIT-BIHDB [41]. The higher result achieved
with the ECG-ID database is 100% of accuracy with an LSTM net-
work and an input vector containing nine heartbeats. Next, the
second-best result doing the same experiment but using only three
heartbeats is 98.2% of accuracy. Similar results are achieved with
the MIT-BIHDB.

Another striking example of identification through NN is the
proposal in [44] where the identification is performed over a
CNN. This CNN’s input is an image containing a concatenation of
several QRS complexes. This picture only contains a line (time ser-
ies of several QRS segments), and the resting image is a blank
space. Despite this, the performance, measured with database
PTBDB [48], is comparable to the best existing works as claimed
by the authors.

Concerning the use of different databases to test the identifica-
tion performance, in [49] Sidek et al. tested their proposal over
databases with users having abnormal cardiac conditions. Those
databases are the well-known MIT-BIHDB, the MIT-BIH supraven-
tricular arrhythmia Database (SVDB) and the Charles Sturt Dia-
bates Complication Screening Initiative Database (DiSciRi DB). To
perform the identification the authors use a Normalize-
Convolute-Normalize (NCN) technique over the EKG segments
and then Bayes Network (BN), MLP, Radial Basis Function (RBF)
and K-NN are used as the classification algorithms. Metrics such
as Sensitivity (Se) and Specificity (Sp) or Positive Predictive Value
(PPV) are used to assses the performance. In terms of accuracy
the results are significantly high (i.e., 96.7%, 96.4% and 99.3% for
MIT-BIHDB, SVDB and DiSciRi DB databases, respectively).

In line with the wave of using NN, in [43] Hong et al. propose
the combined use of MLPs and Transfer Learning2 using the
Inception-v3 network. In detail, the EKG trace (time series) is trans-
formed into images by computing Pearson’s Correlation Coefficients.
Then, the Inception-v3 model is used for feature extraction, and a
fully connected layer is utilised for classification. From the results,
we observe that with higher sampling rates, better results are
reached. For instance, the accuracy is 98.07%, and FPR is 0.69% when
the sampling rate is set to 1 kHz.

One of the main obstacles of identifying users through their EKG
is that many proposals used private databases in their experiments
(e.g., [16] or [38],). Supporting this reasoning, in 2020, a compre-
hensive review of EKG-based solutions is presented in [50]. In this
work, the author shows a list of the common used EKG databases,
including the information whether they are public or private. From
the 21 databases listed, six (30%) are public, but fifteen (70%) are
private. There are just a few available databases in sites such as
Physionet [48], one of the most used repositories of EKG records.
Unfortunately, many works use private databases created ad hoc
for that research, which hinders the results reproducibility.
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In line with the above, an interesting proposal is in [51], in
which Kim and Pyun propose an identification solution based on
bidirectional LSTM and tested with two public databases (NSRDB
and MIT-BIHDB). The authors use as input of the LSTMs the EKG
itself after filtering and normalising the EKG signal. They conduct
experimentation analyses by varying the hidden units (from 125
to 250) and the beats (3, 6 or 9) used in the input. Outstanding
results are achieved with the bidirectional LSTM with both data-
bases. For example, with the proposed LSTM in the MIT-BIHDB,
99.8% of accuracy is achieved when using nine heartbeats and
three hidden layers.

Last but not least, a different approach of classification with NN
is the one in [52]. Their used method to treat with the EKGs is the
Second Order Difference Plot (SODP), a non-linear time-series anal-
ysis method that allows extracting features. They propose a Loga-
rithmic Grid Analysis (LGA) as a quantification method of SODP.
These techniques are first applied to finally classify EKGs with K-
NN. Their method is tested over three different databases: the
ECG-ID database, the NSRDB, and the MIT-BIHDB. Their best results
in terms of accuracy are 91.96%, 99.86% and 95.12% for each data-
base, respectively.
3. Materials and Methods

3.1. Data

The experimentation has been performed with four public Phy-
sionet databases [48]. Each individual in the database counts a file
containing the raw data and an addition file describing character-
istics like the time duration or the sampling frequency.

The main data used in this study is from the NSRDB. We have
chosen this database for our experimentation since it is a public
database, that can be found in [53] and, what is more, the users
present at this database are considered control users which means
that they do not have any remarkable heart disease. This database
includes 18 long-term EKG recordings from the Arrhythmia Labo-
ratory at Boston’s Beth Israel Hospital with no significant arrhyth-
mias. The database involves five men aged 26 to 45 and thirteen
women aged 20 to 503.

Our approach is also tested on MIT-BIHDB [41]. Fundamentally,
we chose this database since it is a well-known database used in
many previous studies (see Table 8). The MIT-BIHDB contains 48
half-our EKG recordings obtained from 47 different subjects. In
detail, the database comprises 23 random patients from an ambu-
latory and 24 patients with significant arrhythmia. Therefore
healthy and not-healthy subjects have been mixed and included
in this database.

Similarly, the third chosen database is the PTBDB [54], an EKG
database available at the generally used PhysioNet repository. This
database contains 549 records from 290 subjects. Regarding the
cardiac health of the subjects, it has approximately 18% of the sub-
jects who are healthy, the 8% are unrecognized and the rest with
different Cardiovascular Disease (CVD) such as dysrhythmia or
myocarditis.

Finally, we have used the BUTQDB database in some of the
experiments (i.e., see section ). This database is also a public data-
base available in [55]. This database comprises 18 long-term
recordings of single-lead EKG collected from 15 subjects (nine
female and six male) aged between 21 and 83 years. The partici-
pants of this database, like the ones in NSRDB, do not have signif-
icant cardiac complications. Therefore, they are all also considered
control users.
3 When referring to this database, names from 0 to 17 are linked to each user in
alphanumeric order.
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3.2. Signal Preprocessing

Before any analysis preprocessing of the EKG signal has been
carried out by the following steps: a) Bandpass filtering of the sig-
nal between 5 and 15 Hz; b.) differentiation; c) rectification (squar-
ing); and d.) moving-window integration.

To generate the EKM we need first to perform the R-peaks
detection procedure. We have used the Biosignals library, which
provides a set of functions (e.g., filter or event detection) com-
monly used in the pipeline of biosignals processing4.

Particularly, we have used the well-known Pan and Tompkins
(PT) algorithm, which employs a dynamic threshold [34] (a. Buffer
initialisation; b. Detection of possible and provable R-peaks; and c.
Exclusion of peaks ([34] criteria) and lag correction) to generate
the definitive list of R peaks.

Using these steps with the EKG records in the database, we
build a dictionary with N entries (being N the number of users of
each database), and each entry contains a list of all its R-peaks.
3.3. EKG

As mentioned in Section 1, the EKM is a set of several aligned R-
peaks of an EKG trace composing a matrix and then transformed
into an image through a heatmap representation.

The EKM has already been proposed in several works for med-
ical purposes [24,27,25,26,28]. In this article, we aim to show the
feasibility of EKMs for identification (cybersecurity purposes). To
the best of our knowledge, it is the first time that this approach
is proposed. Next, we explain the generation procedure of the
EKMs.

To create the EKM5, first of all, we define a window which is an
EKG segment containing the number of beats declared to be on the
EKM (see Fig. 4 as illustration). To refer to this number of beats (R-
peaks), we use a metric called beats per frame (bpf), which is the
number of different beats that there appear on each frame or heat-
map of the EKM. The value of bpf is a hyperparameter that depends
on the problem to address. In our experiments, we test three bpf val-
ues: 7, 5 and 3.

Once we have divided the EKG into windows, we need to pro-
cess each of them to obtain the EKM. Precisely, we split the win-
dow into smaller segments of two peaks forming each row of the
EKM. As shown in Table 1, two values delimit each segment, where
the l parameter represents the average distance between beats for
the entire EKG record of a subject:

� Init Segment: Given by px � ailwhere px is the sample position
of the peakx and ai is a free hyperparameter indicating the per-
centage of samples that are taken before px. For all our experi-
ments we set ai to 0:2.

� End Segment: Given by pxþ1 þ ael where pxþ1 is the sample
position of the peak consecutive to peakx and ae is a hyperpa-
rameter which determines the percentage of samples that are
taken after pxþ1. We set ae ¼ 0:3 in our experiments.

Each of the processed segments represents a row of the EKM.
Note that all the peaks are aligned since the ai, and ae values are
fixed for all the rows. The size of the EKM matrix is bpf � 1 rows
with two peaks per row. To obtain the final image EKM represen-
tation, we need to compute a heatmap. As illustration, Fig. 5 is
the representation of the plot seen in Fig. 4b.
4 https://github.com/biosignalsplux/biosignalsnotebooks
5 Our implementation to generate EKMs is available at:https://github.com/cfuster-

barcelo/ELEKTRA-approach

https://github.com/cfusterbarcelo/ELEKTRA-approach
https://github.com/cfusterbarcelo/ELEKTRA-approach


Fig. 4. Steps I and II of the Elektrokardiomatrix.

Fig. 5. EKM III: Heatmap of the EKG.

Table 1
Segment Separation of the window

Init Segment px � ail

End Segment pxþ1 þ ael
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3.4. User Identification

3.4.1. EKMs databases
Following the procedure described in Section 3.3, we build sev-

eral EKM datasets, one per each bpf parameter and for the data-
bases mentioned in Section 3.1. Considering the creation of the
EKM datasets, we have two different types of databases depending
on how large the EKG recordings are. For large EKG recordings,
such as NSRDB, we obtain EKM’s images until we reach an upper
threshold equal for each user in the database (i.e., 3000 images
per user in our experiments). Otherwise, for shorter EKG record-
ings, such as the MIT-BIHDB or PTBDB, we obtain as much EKMs
images as we can until we run out of signal. Once we have gener-
ated the datasets and to identify users (categorical classification
problem), we have trained a CNN as it will be explained later on
Section 3.4.2. As conventional, we divide the dataset into several
sets:

� Train dataset: From the whole database, we use the 80% of
EKMs to train the CNN for the NSRDB and a 90% for the MIT-
BIHDB and PTBDB. Besides, from this training dataset another
split is done in order to cross-validate the CNN parameters,
creating:
– Train dataset: (xtrain). A 70% (for the NSRDB) or a 90% (for the

MIT-BIHDB and PTBDB) of EKM samples for each user.
– Validation data-set: (xval). A 30% (for the NSRDB) or a 10%

(for the MIT-BIHDB and PTBDB) of EKM samples for each
user.

� Test data-set: (xtest). It is a 20% of the NSRDB and a 10% for the
MIT-BIHDB and NSRDB. The number of images of this dataset is
the resting from the training ones. It is noteworthy that the
trained model never sees the testing images. Testing images
are only used to test and predict once the model is trained.

The length of the EKG recordings for the MIT-BIHDB and PTBDB
also influence the datasets created for each of the bpf values ana-
lyzed. Therefore the higher the value of the parameter bpf fewer
images are going to be obtained for each user and dataset.

3.4.2. CNN Architecture
Nowadays, CNNs are the most used NNs for feature extraction

in computer vision [56–58]. The good performance that CNNs get
over image data is because convolutional layers can extract essen-
tial features from the images and the power of Graphical Process
Unit (GPU) as processors.

As a proof-of-concept solution to show the feasibility of using
EKMs (extracted from EKG traces) for identification purposes, we
propose a simple CNN architecture that offers high performance
in terms of accuracy and low error rates, as shown in Section 4.
In detail, the architecture of the CNN consists of just one convolu-
tional layer plus a fully connected layer to classify users. We have
chosen to test all our work with a very simple CNN to show that
our approach can identify or classify users even with an elemen-
tary architecture. Thus, we focus our approach on introducing
the EKM as a valid identification method and for that purpose,
we have conducted in-depth and rigorous experimentation. Fig. 6
depicts the used architecture, specifying all dimensions and layers.

The first step that the network performs can be considered as a
preprocessing step. All input images are cropped to reduce the
number of parameters and eliminate the image axis and white
spaces, discarding irrelevant information.

Next, the second layer of the CNN is structured as follows:

� Conv2D: A 2D Convolution occurs where the kernel size is set to
3� 3 kernel. After this step, we get high-level features.



Fig. 6. CNN Architecture.

C. Fuster-Barceló, P. Peris-Lopez and C. Camara Neurocomputing 506 (2022) 37–49
� Relu: A Rectified Linear Unit (ReLU) function is used to provide a
rectified non-linear transformation.

� MaxPooling: The Pooling layer reduces the size of the samples.
A kernel of size 2� 2 inspects the whole image and gets the
maximum value of that kernel, downsampling the images to
half of its input size.

� Dropout: A dropout of 70% takes place as a regularisation tech-
nique to prevent over-fitting.

If we had another layer for our CNN in order to make it more
complex, it would be the same one as the second layer. Neverthe-
less, our focus here is to show how our approach can identify users
with satisfactory results with only one Conv2D layer for our CNN
showing that an uncomplicated architecture is enough to obtain
those good results with the ELEKTRA proposal.

The third layer of the network is the Fully-Connected Layer
(FCL) or classification layer. This layer aims to reduce the number
of features and group them into the number of classes that have
to be identified (18 users in the NSRDB). Since we deal with a cat-
egorical classification problem, we use a softmax activation func-
tion to get the probability that an image belongs to a class6. The
FCL consists on three steps:

� Flatten: Once the previous layers extract features, they are flat-
tened into a column vector.

� Dense: Two dense layers are used to reduce the number of fea-
tures extracted to the number of existing classes.

� Softmax: The last dense layer’s output is activated by a softmax
function to get the probability of belonging to each class.

A NN updates its parameters at each layer by optimising a cost
or loss function during the training of the model. The CNN trains
the model while a Categorical Cross-Entropy cost function is opti-
mised. For this purpose, we choose the Adam optimiser since it is a
widely used approach when training CNNs [59]. Our experiments
train the models with different numbers of epochs and steps for
epoch depending on the chosen database. In the majority of the
experiments, we employ 50 epochs and 70 steps per epochs, but
others, such as the ones for the MIT-BIHDB and PTBDB have 100,
150, or even 200 epochs due to the tiny EKM datasets. Also, steps
per epoch (see Eq. 1) for these two commented datasets are chan-
ged depending on the number of training images:
6 In some experiments we perform a binary classification, and some adjustments
are needed, as the substitution of Softmax by a Sigmoid function.
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Stepsper epoch ¼ lengthðtraindatasetÞ
batchsize

ð1Þ

where the batch size is set to 32.
After training each of the models used in each experiment using

the training and validation datasets, we only have to test those
models with the testing images that the model has never seen.
We obtain all the metrics (e.g., accuracy or EER) specified in each
experiment using these mentioned testing images.

4. Results

In order to show how the EKM allows the unequivocal identifi-
cation of individuals, we perform several experiments varying dif-
ferent aspects of the network, of the EKM or even of the EKG. These
experiments are willing to show how the NN adapts to the problem
proposed and how user identification is possible through all the
different approaches. In the following experiments, we use the
NSRDB except when it is specifically indicated.

4.1. BPF Influence over User Identification with NSRDB

We launch three different experiments over the network
described in Section 3.4.2 modifying the bpf parameter (i.e.,
bpf ¼ f3;5;7g). Note that a bpf indicates how many R-peaks are
used to generate an EKM.

After computing the EKM datasets for the three bpf values, we
resize all the EKM heatmaps before introducing them to the CNN
to reduce computational costs. The raw image extracted from the
EKG is 57x108 pixels, including all its blank space and the margins
of the picture indicating the axis values. At this step, we resize all
images into 29x54 pixels. Then, as explained in Section 3.4.2, the
first layer of the CNN is a cropping layer that removes all blank
spaces and axis values.

We test the CNN with the three produced datasets. This exper-
iment’s main goal is to determine how many beats (R-peaks in an
EKM) are enough to identify an individual. Table 2 summarises the
results of these experiments. We use four commonmetrics to com-
pare the proposals. Regarding the correct classification of
instances, we have the Loss and Accuracy metrics. Concerning
errors, we use the False Acceptance Rate (FAR), and the False Rejec-
tion Rate (FRR) commonly used in biometrics [60].

The results are very similar in the three tests with minor differ-
ences (see Table 2). The correct classification of instances is almost
perfect in our system. An accuracy higher than 0.99 and loss in the
range of 10�2 confirms this desirable property. Concerning errors,
the FAR is below the FRR. That is, authorised access is K times more



Table 2
Metrics obtained with the CNN when varying the number of bpf into 3, 5 or 7. These results are from NSRDB with 18 users and 600 samples for testing each user.

Tests bpf Loss Accuracy % FAR (%) FRR(%)

Test 01 7 0.0176 99.44 0.03 0.06
Test 02 5 0.0270 99.47 0.03 0.06
Test 03 3 0.0179 99.53 0.02 0.05
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costly than locking out a legitimate user (i.e. K � FAR ¼ FRR). The
parameter K is equal to 2.5 for bpf ¼ f5g and is 2 for
bpf ¼ f3;7g. Since the differences are minimal between the three
alternatives examined, as a trade-off between usability and perfor-
mance, we consider setting the bpf parameter to 5 (Test 02) as a
fair value, and this is the value assumed in the subsequent
experiments.
4.2. BPF Influence over User Identification with MIT-BIHDB

In order to test our model with other databases, we have per-
formed the same experiment as the one above in Section 4.1. The
MIT-BIHDB database (explained in Section 3.1) has been tested
with different number of bpf to evaluate the performance of our
model.

To do so, we first need to obtain the heatmap or EKM database
of the MIT-BIHDB for every bpf (being 3, 5 or 7bpf). This dataset, as
we have commented on Section 3.4.1, is different from the NSRDB
on how it is built due to shorter EKG recordings. Consequently, as
not all recordings have the same duration for each subject, we can
not obtain the same number of EKMs for each subject. In fact, due
to that, also different number of images are obtained for each
experiment when talking about the bpf number because the total
number of R-peaks from the EKG signal must be divided into the
number of bpfs to obtain the number of images collected (i.e.
R� peakstotal / bpf = Number of EKMs obtained for bpf ¼ 3;5;7). In
conclusion, due to shorter EKG recordings, we are going to have
unbalanced datasets of EKMs for each subject and bpf parameter
–the higher is the number of bpf chosen, the fewer images are
obtained for that dataset.

Once we have the EKG dataset, we should separate it into the
training and testing sets as explained in Section 3.4.1. Due to
shorter datasets, for the MIT-BIHDB we have done a split of 90%
and 10% for training and testing, respectively. This way, more
images are used in the training phase, and better results can be
acquired. The rest of the experiment is developed following the
same procedure described in Section 4.1.

Consequently, according to what we can see in Table 3 our
method obtains similar results regarding the experiments per-
formed with the NSRDB. We have moved from 54000 images in
each experiment with the NSRDB database to 35949, 21149, and
15119 images for 3, 5, and 7 bpfs, respectively, with this database.
Meaning that even we have reduced the pool of EKM images dras-
tically, our method can achieve high performance. We can explain
the slight decrease of some metrics such as the False Rejection Rate
(FRR) because the fewer images that we have to train our model,
the more difficult is the building of a model capable of generalizing
for all subjects.

This also affects the difference in results between the number of
bpf chosen because as higher is the bpf number, the lower amount
of images we have to train and test the model.
4.3. BPF Influence over User Identification with PTBDB

Following the same line as the one in the previous experiment
in Section 4.2 we have tested the PTBDB with 3, 5, and 7 bpfs to
evaluate our approach with a different database.
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As we have done with the two previous databases, we need to
obtain a dataset of heatmaps or EKMs to perform the user classifi-
cation. Again, this dataset is going to be an unbalanced one due to
the length of each EKG recording. All EKG recordings from this
dataset are even shorter than the ones in the MIT-BIHDB. The total
number of images that we have to train this model is 9854, 5891,
and 4180 for 3, 5, and 7 bpf, respectively.

Obtaining the heatmap dataset and performing the training and
the testing phase of the experiments have been developed simi-
larly to for the MIT-BIHDB database in Section 4.2, resulting in
what we can see in Table 4.

Considering the fewer number of images that we dispose of for
the training and testing of our model, our results seen in Table 4
are pretty good. As we have explained before and as a rule of
thumb, the smaller is the number of images we have, the worst
results we get. It also explains why we get a much better result
when we evaluate our model with 3 bpf than when we are doing
it with 7 bpf. Notably, we have approximately 2,3 times more
images for the dataset with 3 bpf in comparison with the dataset
with 7 bpf. Nevertheless, the results are competitive for all the
experiments, even in the worst scenario with fewer images. What
is remarkable is that even with a dataset of fewer than 10,000
images, we are can train and test a model which is good enough
to classify and identify users with an accuracy of almost 90% using
a simple CNN with only 1 Convolutional layer. Table 5.
4.4. Time Costs of Convergence

In this experiment, we aim to reduce the computational costs of
our system. To do so, we train the model from Test 02 (i.e., bpf¼ 5)
using the same parameters except for the number of epochs. We
perform a decrease of 20% (from 50 to 30 epochs). Fig. 7 illustrates
both models’ performance during training and validation in terms
of accuracy and loss.

As shown in Fig. 7, both configurations are feasible and work
accurately. They achieve almost identical results in terms of classi-
fication success (a difference less than 10�2). Concerning errors, the
FRR is higher than FAR in both cases. The parameter K (i.e.
K � FAR ¼ FRR) is equal to 2 and 2.2 for 50 and 30 epoch respec-
tively. Therefore, if we can afford to have a slightly high FRR (legit-
imate users may attempt two times to get access to the system),
the use of 30 epoch is appropriated. If that FRR is excessively high
for the target application, it is better to use 50 epoch in which both
FAR and FRR are at a low level.
4.5. One-vs-the-rest (OvR) Classifier

As an additional experiment, we test the system using the One-
vs-the-rest (OvR) approach. For instance, we can use this solution
for building the ID identification system of our smartphone. To
make the system more resistant to attacks (e.g., replay or imper-
sonation attacks), we use two classes (i.e., the samples of the target
user and the rest).

We compute a new database following the approach described
below. We randomly chose N EKM images of a user-q for building
the target class. Next, we choose the same number of randomly
sampled images for the resting users (i.e., user-p where



Table 3
Metrics obtained with the CNN over the MIT-BIHDB when varying the number of bpf into 3, 5 or 7.

Tests bpf Loss Accuracy (%) FAR (%) FRR(%)

MITDB-01 7 0.0818 98.33 0.04 1.75
MITDB-02 5 0.0542 98.84 0.03 1.17
MITDB-03 3 0.0566 98.26 0.04 1.67

Table 4
Metrics obtained with the CNN over the PTBDB when varying the number of bpf into 3, 5 or 7.

Tests bpf Loss Accuracy (%) FAR (%) FRR(%)

PTBDB-01 7 0.9239 79.12 0,01 0,05
PTBDB-02 5 0.512 87.27 0,06 0,48
PTBDB-03 3 0.4214 89.8 0,05 0,45

Table 5
Metrics obtained with the CNN for training the model with 50 or 30 epochs

Tests Epochs Loss Accuracy (%) FAR (%) FRR(%)

Test 02 50 epochs 0.027 99.47 0.03 0.06
Test 04 30 epochs 0.0374 98.94 0.05 0.11
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p 2 f0;1; . . .17g and p– q). We use 2400 EKMs for the training and
600 EKMs for the testing datasets (N ¼ 3000 in our experiments),
as in other experiments.

Concerning the CNN model, we maintain many of the model’s
parameters (e.g., epochs or dropout) introduced in Section 3.4.2,
but we make some modifications due to the problem nature. The
changes consist of using a Sigmoid for the activation function
and a Binary Cross-Entropy for the loss function.

In Table 6 we compare the results of this binary classification
with Test 02 (multi-class classifier). In terms of accuracy, the dif-
ferences are meaningless (a decrease of less than 0.2%). We observe
a worsening of the results concerning errors, although the system
works in the EER point (i.e., FRR ¼ FAR). This result is still appropri-
ate for a biometrics system since we are still below a 1% [60]. In
Table 7, we observe the normalised confusion table of this experi-
ment, which clearly shows a tiny misclassification rate.

4.6. Classification of a non-seen user

In this experiment, we assess the performance of our system
against illegitimate samples. In cybersecurity, this kind of attack
represents an impersonation attack.

Similarly than in Section 4.5, we build a OvR classifier for each
of the eighteen users in the NSRDB. For testing these models
against impersonation, we randomly choose a user of the
BUTQDB7. We generate 3000 EKM images for this user, using the
procedure explained in Section 3.4.1. Note that there is no bias
between users from the same database or between both databases
since no significant heart diseases were discovered in any subjects.

After that, we test each of the models with a set of illegitimate
EKMs (i.e., 3000 EKMs of user 111001). We measure how many
times each of the images are misclassified as a legitimate user.
Next, we compute the average value of these eighteen experi-
ments, representing the probability of success for an adversary to
conduct an impersonation attack. Mathematically, assuming a tar-
get user-p that belongs to the class-p and an EKMq sample of a user-
q with q – p:

pðAIÞ ¼ pðy ¼ class� pjx ¼ EKMqÞ < a ð2Þ
7 In our experiments, the user 111001.
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In our experiments, the average a value is 0.077. It is a reason-
able value for many applications. Note that it implies that the
adversary, on average, only bypasses the system one in ten times.
A reader can consider that this value is high but likely, many sys-
tems are blocked after a much lower number of attempts (e.g.,
ATM cards are blocked after three attempts8).

4.7. Classification of a Noisy User

As a final experiment, we evaluate our system performance
when dealing with noisy samples. We randomly choose a user
from the NSRDB (e.g., the user-12) and add Gaussian Noise
(Nð0;0:05Þ) to its EKG record. Next, we process this noisy EKG
obtaining its R-peaks (see Section 3.2) and computing the EKM
images (see Section 3.3).

Once generated these EKMs, we evaluate these new instances
with the CNN network of Test 02 (see Section 4.1 for details). After
testing 2400 EKMs of the randomly chosen user, the classification
accuracy is 99.083%. The above result implies that our proposed
system maintains its workability with noisy signals. Note that
noisy signals are widespread when the EKG records are captured
with low-cost EKG sensors [61].

5. Discussion & conclusions

This work proposes a cutting-edge biometric identification
technique based on the novel representation of an EKG trace
named Electrocardiomatrix (ECM or EKM). Recall that EKMs are a
heatmap representation of several aligned peaks of an EKG com-
posed within a matrix. To show our identification proposal’s feasi-
bility, we use a simple CNN showing that our approach is enough
to identify each user with just one convolutional layer.

In our approach, the fiducial points (R-peaks) are needed to
build the EKM heatmaps, but from this point, we build the identi-
fication system based on images, and fiducial points are not
involved at all in this part (identification system). This property
is in line with some works, such as [17] or [62], that claims that
we can achieve better results when the identification avoids the
fiducial points (non–handcrafted identification solutions [63]).
Nevertheless, other works such as [45] use fiducial points to iden-
8 e.g.,https://www.barclays.co.uk/help/cards/debit-card/wrong-pin/

https://www.barclays.co.uk/help/cards/debit-card/wrong-pin/


Fig. 7. Accuracy and Loss during training and validation for 50 and 30 epochs for
heatmaps with 5bpf over the NSRDB.
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tify users. This approach’s main drawback is that detecting all fidu-
cial points on an EKG has a high computational cost. Back to our
proposal, there is a handcrafted step in which R-peaks are detected
to generate the EKM inputs to the CNN network. Note that this
fiducial point is easy to detect (e.g., peaks with higher amplitude),
and we employ a well-known and efficient algorithm for getting
these peaks (i.e., Pan-Tomkins algorithm).

Table 8 shows a comparison between proposals whose primary
goal is to identify individuals through their EKG by applying many
different techniques. In the wave mentioned previously, if we com-
pare our solution to [45] based on fiducial points, we can observe
that FAR (unauthorised persons are incorrectly accepted) is one
magnitude lower in our proposal. Concerning experiment repro-
ducibility, some works (e.g., [16] or [38]) use private databases,
which hinder their repeatability. We avoid this critical issue, using
NSRDB, MIT-BIHDB, PTBDB and BUTQDB, which all of them are
freely available databases at Physionet, as explained in Section 3.1.

Apart from using public datasets, we consider it mandatory to
explore the possibility of studying control users without mixing
them with patients with CVD, as shown in the experiments with
the NSRDB database. We use control users in all the experiments
done with the NSRDB motivated by this fact. An opposite example
is [49], in which the authors test their solution using the DiSciRi
DB. Although the results are very positive, we consider that the
authors primarily identify cardiac diseases instead of features that
unequivocally identity users.

Regarding our model’s efficiency, our EKM images, used to feed
the CNN, are heatmaps of an EKG matrix. That is, all the informa-
tion contained inside each pixel of the picture is meaningful (e.g.,
there are not black spaces or axis in the image). Contrary to that,
in [44], the authors use images with blank spaces, which has con-
sequences on the errors that are a bit high. In detail, abstracting
from the used dataset, the errors (FAR and FRR) in our proposal
are two magnitudes lower than in [44].

Apart from efficiency, system usability is another critical aspect
in the design of a proposal. Our proposal shows its workability
using 3, 5 or a maximum of 7 R-peaks, which is a low value and
demands between 7 and 5 s for acquiring a sample (assuming a
subject beating between 60 and 80 heartbeats per second). On
the other end, we find solutions such as the one presented in
[40]. In this approach, the authors achieve good results but require
20 beats per sample which may render the system unusable for
many practical applications.

In line with the user identification using CNNs, we can find the
work presented in [64] where their EKG segments are transformed
to the wavelet domain to set them as the input of a 1-D CNN. The
authors test it over eight different databases with control users and
users with CVD, but their results in terms of the Identification Rate
(IR) are not as accurate as ours. As we can see in Table 8 their accu-
racy is very high (99%) as in our proposal (99.98%.)

Cascaded-CNN is the Neural Network technique applied to the
work done in [65]. In the presented work two CNNs are used: a first
CNN for the feature extraction and a second CNN for User Identifi-
cation. Their work is tested over different databases as we can see
in Table 8 but again, in terms of the IR they can not achieve a high
performance as we do. In fact, with the NSRDB they obtain an IR of
93.1% while we obtain a 99.95% with the same database.

Many works that use CNNs as the identification method for EKG
signals, use a 1D-CNN instead of the usual 2D-CNN to set as the
input of the NN a single vector. This approach is the case of [66]
where they use four uni-dimensional convolutional layers together
with the euclidian distance for the user identification. Over the



Table 8
Comparative analysis of ECG-based identification proposals.

Proposal Year Database

One-lead ECG for identity verification [40] 2002 MITDB

ECG Biometrics: A robust short-time
frequency analysis [16]

2010 Ad-hoc

Data improvement model based on ECG
biometric for userauthentication and

identification [45]

2020 ”You snooze you win

ECG-ID

ECG-based biometrics using Recurrent
Neural Networks [42]

2017 MITDB

PTB
Deep-ecg: Convolutional Neural Networks

for ECG biometric Recognition [44]
2019 E-HOL-03–0202-003

DiSciRi DB
SVDB

ECG biometric with abnormal cardiac
conditions in remote monitoring

systems [49]

2014 MITDB

ECG biometric recognition: Template-free
approaches based on Deep Learning

[43]

2019 PTB

MITDB
ECG Identification For Personal

Authentication UsingLSTM-Based Deep
Recurrent NN [51]

2020 NSRDB

ECG-ID
NSRDB

ECG based human identification using
Second Order Difference Plots [52]

2019 MITDB

HeartID: A Multiresolution Convoltuional
Neural Network for ECG-Based

Biometric Human Identification in
Smart Health Applications [64]

2017 CEBSDB

WECG
FANTASIA
NSRDB
STDB
MITDB
AFDB
VFDB

Toward improving ECG biometric
identification using cascaded

convolutional neural networks [65]

2020 CEBSDB

NSRDB
STDB
AFDB

An End-to-End Convolutional Neural
Network for ECG-Based Biometric

2019 PTBDB

Table 6
Metrics obtained with the OvR experiment with user 14

Tests Classification Loss Accuracy (%) FAR (%) FRR(%)

Test 02 Categorical 0.027 99.47 0.03 0.06
OvR Binary 0.023 99.33 0.67 0.67

Table 7
Normalised Confusion Matrix from the OvR experiment.

0 0.987 0.013

1 0 1

0 1

C. Fuster-Barceló, P. Peris-Lopez and C. Camara Neurocomputing 506 (2022) 37–49

46
PTBDB they obtain a 9.03% of Equal Error Rate (EER) which is a
much higher rate than the one we obtain with the same database.
Our worst result is a 0.27% of EER with the PTBDB.

Nowadays, the trend for designing identification system is to
use Deep Learning approaches. An example of that is [42], in which
high-performance metrics concerning the accuracy are obtained.
Subjects Metric Identification Method Result

DBNN 80
47 Acc (%) Template Matching 95

Acc (%) 99
269 EER (%) MLE 0.37

FAR (%) 3:3 � 10�5

” 1985 FRR (%) Feature Extraction + RF
Classifier

0.64003

RNN 93.3
GRU 96.7

90 LSTM 100
RNN 93.6
GRU 96.8

47 Acc (%) LSTM 100

290 1.63
202 EER (%) CNN 4.47

51 MLP 99.3
67 RBF 96.4
46 Acc (%) NCN kNN 96.7

IR (%) 98.07
FPIR (%) Transfer Learning + MLP 13.36

47 99.73
18 Acc (%) Bidireccional LSTM 100

90 91.96
18 99.86
47 Acc (%) Feature Extraction with

SODP + kNN
95.12

20 IR (%) 1D-CNN 99.0

22 94.5
40 97.2
18 95.1
28 90.3
47 91.1
23 93.9
22 86.6
20 IR (%) Cascaded-CNN 93.1

18 91.4
28 92.7
23 89.7
232 EER (%) 1D-CNN 9.06



Table 8 (continued)

Proposal Year Database Subjects Metric Identification Method Result

Authentication [66]
3 bpf 99.53
5 bpf 99.44

Acc (%) 7 bpf 99.47
3 bpf 0.02
5 bpf 0.03

FAR (%) 7 bpf 0.03
3 bpf 0.05
5 bpf 0.06

FRR (%) 7 bpf 0.06
3 bpf 0.04
5 bpf 0.04

EER (%) 7 bpf 0.04
3 bpf 99.95
5 bpf 99.94

IR (%) 7 bpf 99.94
3 bpf 0.02
5 bpf 0.03

NSRDB 18 FPIR (%) EKM + CNN 7 bpf 0.03
3 bpf 98.26
5 bpf 98.84

Acc (%) 7 bpf 98.33
3 bpf 0.04
5 bpf 0.02

FAR (%) 7 bpf 0.03
3 bpf 2.08
5 bpf 2.08

FRR (%) 7 bpf 2.08
3 bpf 1.06
5 bpf 1.05

EER (%) 7 bpf 1.06
3 bpf 99.93
5 bpf 99.95

IR (%) 7 bpf 99.93
3 bpf 0.04
5 bpf 0.02

Our Approach Present MITDB 48 FPIR (%) EKM + CNN 7 bpf 0.04
3 bpf 89.8
5 bpf 87.27

Acc (%) 7 bpf 79.12
3 bpf 0.05
5 bpf 0.06

FAR (%) 7 bpf 0.01
3 bpf 0.45
5 bpf 0.48

FRR (%) 7 bpf 0.05
3 bpf 0.25
5 bpf 0.27

EER (%) 7 bpf 0.03
3 bpf 99.91
5 bpf 99.88

IR (%) 7 bpf 99.98
3 bpf 0.05
5 bpf 0.06

PTBDB 232 FPIR (%) EKM + CNN 7 bpf 0.01

yNotation: Acc (Accuracy); FAR (False Acceptance Rate); FRR (False Rejection Rate); EER (Equal Error Rate); IR (Identification Rate); FPIR (False Positive Identification Error
Rate)
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These results are achieved as the penalty of using both complex
Recurrent Neural Networks (LSTM or GRU) and a higher number
of beats (9) per instance. In [43], Hong et al. propose a solution
based on Transfer Learning. Interestingly in this proposal, the input
images to the network are computed using Pearson’s correlation
coefficients. The results are slightly lower in terms of accuracy,
and errors (FPR) are a magnitude higher than our proposal.

In terms of complexity, we put special attention on simplifying
the network while maintaining high performance. In [51], Kim and
Pyun obtain almost perfect results as expenses of requiring a com-
plex bidirectional LSTM network, getting the best results with 250
hidden units and three hidden layers. Altan et al. propose a simple
K-Nearest Neighbor algorithm as the core of its identification sys-
47
tem. Although this approach is more straightforward than our CNN
architecture, this proposal’s main drawback is that it requires the
extraction of features using a Second-Order Difference Plot (SODP),
which is more complex than our EKM generation.

All in all, our proposal is competitive in comparison with state
of the art. We have proposed a novel biometrics system based on
EKG. The use of the EKG guarantees the universality (everyone
alive is beating) and permanence (cardiac signals are stable during
at least five years [67]) of our system. Collectibility is also satisfied
even via low-cost EKG sensors, and the reproducibility is assured
by using exclusively public datasets. We show how 3, 5 or 7 heart-
beats are enough to generate the input images (EKMs), which guar-
antees system usability. Also, we can forecast the system
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acceptability due to the possibility of acquiring an EKG through
non-invasive devices such as a smartwatch and the widespread
adoption of these devices [68]. Concerning workability, we achieve
almost a perfect accuracy of 99.53% identifying the 18 users of
NSRDB. The errors are also at a very level, with a False Acceptance
Rate (FAR) and FRR of 0.02% and 0.05%, respectively. We have also
tested how our system remains working accurately with noisy EKG
inputs. Regarding the resistance to circumvention, the probability
of conducting an impersonation is low (i.e., pðAIÞ ¼< 0:077).
Therefore, we conclude that EKMs are both an effective technique
to help cardiologists diagnose and an effective tool to build an
identification system, as explained in this article.
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